Lipid metabolism is the processing of lipids for energy use, energy storage, and structural component production, and uses fats from dietary sources or from fat stores in the body. Lipids are digested by lipase enzymes in the GI tract (with the help of bile acids) and are absorbed directly through the cell membrane. Free fatty acids are then resynthesized into triacylglycerols (TAGs) in the enterocytes. Finally, lipid components are repackaged into chylomicrons and transported throughout the body for use or storage. Within target cells, fatty acids can be synthesized from acetyl-CoA molecules, and TAGs can be synthesized from the fatty acids and a glycerol backbone. Glycerophospholipids and sphingolipids are synthesized similarly. Conversely, the breakdown of TAGs releases free fatty acids, which undergo beta oxidation, generating significant amounts of energy for the body.
Last updated: Sep 8, 2022
Lipids Lipids Lipids are a diverse group of hydrophobic organic molecules, which include fats, oils, sterols, and waxes. Fatty Acids and Lipids are broken down and packaged into micelles Micelles Particles consisting of aggregates of molecules held loosely together by secondary bonds. The surface of micelles are usually comprised of amphiphatic compounds that are oriented in a way that minimizes the energy of interaction between the micelle and its environment. Liquids that contain large numbers of suspended micelles are referred to as emulsions. Malabsorption and Maldigestion (spherical aggregates, inside lipophilic and outside hydrophilic Hydrophilic Aminoglycosides), and are readily absorbed by the membranes of enterocytes.
Lipid | Enzyme | Products |
---|---|---|
Triacylglycerols Triacylglycerols Fatty Acids and Lipids | Lipases | Monoglyceride and 2 FAs |
Cholesterol Cholesterol The principal sterol of all higher animals, distributed in body tissues, especially the brain and spinal cord, and in animal fats and oils. Cholesterol Metabolism esters | Cholesterol ester hydrolase Cholesterol ester hydrolase Cholesterol Metabolism | Cholesterol Cholesterol The principal sterol of all higher animals, distributed in body tissues, especially the brain and spinal cord, and in animal fats and oils. Cholesterol Metabolism and a FA FA Inhaled Anesthetics |
Phospholipids | Phospholipase A2 | Lysolecithin Lysolecithin Derivatives of phosphatidylcholines obtained by their partial hydrolysis which removes one of the fatty acid moieties. Cholecystitis and a FA FA Inhaled Anesthetics |
As lipids Lipids Lipids are a diverse group of hydrophobic organic molecules, which include fats, oils, sterols, and waxes. Fatty Acids and Lipids are broken down, they (along with components from the bile Bile An emulsifying agent produced in the liver and secreted into the duodenum. Its composition includes bile acids and salts; cholesterol; and electrolytes. It aids digestion of fats in the duodenum. Gallbladder and Biliary Tract: Anatomy) arrange themselves in structures called micelles Micelles Particles consisting of aggregates of molecules held loosely together by secondary bonds. The surface of micelles are usually comprised of amphiphatic compounds that are oriented in a way that minimizes the energy of interaction between the micelle and its environment. Liquids that contain large numbers of suspended micelles are referred to as emulsions. Malabsorption and Maldigestion.
This diagram shows the absorption of short- to medium-chain fatty acids and large fats in the small intestine:
Large fats are grouped into micelles to be absorbed by the enterocytes. These micelles are later repackaged as chylomicrons and exit the enterocyte into the lymphatic circulation. Short- to medium-chain fatty acids pass without assistance into the portal circulation.
This diagram shows the absorption of short-chain fatty acids (SCFAs) in the large intestine:
SCFAs use the SMCT1 transporter, which is dependent on the sodium gradient created by the basolateral Na
ENaC: epithelial sodium channel
The lipoprotein structure facilitates transport of lipids through the blood.
Image: “Chylomicrons contain triglycerides, cholesterol molecules, and other apolipoproteins (protein molecules)” by OpenStax College. License: CC BY 4.0Lipoprotein | Source | Composition | Main lipid components | Apolipoproteins |
---|---|---|---|---|
Chylomicrons | Intestine |
|
Dietary lipids Lipids Lipids are a diverse group of hydrophobic organic molecules, which include fats, oils, sterols, and waxes. Fatty Acids and Lipids |
|
VLDL | Liver Liver The liver is the largest gland in the human body. The liver is found in the superior right quadrant of the abdomen and weighs approximately 1.5 kilograms. Its main functions are detoxification, metabolism, nutrient storage (e.g., iron and vitamins), synthesis of coagulation factors, formation of bile, filtration, and storage of blood. Liver: Anatomy (intestine) |
|
Endogenous triacylglycerols Triacylglycerols Fatty Acids and Lipids |
|
LDL | VLDL |
|
Cholesterol Cholesterol The principal sterol of all higher animals, distributed in body tissues, especially the brain and spinal cord, and in animal fats and oils. Cholesterol Metabolism | B-100 |
HDL |
|
— |
|
|
Lipogenesis Lipogenesis De novo fat synthesis in the body. This includes the synthetic processes of fatty acids and subsequent triglycerides in the liver and the adipose tissue. Lipogenesis is regulated by numerous factors, including nutritional, hormonal, and genetic elements. Nonalcoholic Fatty Liver Disease is the process of synthesizing new lipids Lipids Lipids are a diverse group of hydrophobic organic molecules, which include fats, oils, sterols, and waxes. Fatty Acids and Lipids. This occurs primarily in the liver Liver The liver is the largest gland in the human body. The liver is found in the superior right quadrant of the abdomen and weighs approximately 1.5 kilograms. Its main functions are detoxification, metabolism, nutrient storage (e.g., iron and vitamins), synthesis of coagulation factors, formation of bile, filtration, and storage of blood. Liver: Anatomy, but also throughout the body.
FA FA Inhaled Anesthetics synthesis Synthesis Polymerase Chain Reaction (PCR) occurs in the cytosol Cytosol A cell’s cytoskeleton is a network of intracellular protein fibers that provides structural support, anchors organelles, and aids intra- and extracellular movement. The Cell: Cytosol and Cytoskeleton via several enzymes Enzymes Enzymes are complex protein biocatalysts that accelerate chemical reactions without being consumed by them. Due to the body’s constant metabolic needs, the absence of enzymes would make life unsustainable, as reactions would occur too slowly without these molecules. Basics of Enzymes which are all contained in a single complex known as fatty acid synthase.
In the cytoplasm:
In the endoplasmic reticulum Endoplasmic reticulum A system of cisternae in the cytoplasm of many cells. In places the endoplasmic reticulum is continuous with the plasma membrane (cell membrane) or outer membrane of the nuclear envelope. If the outer surfaces of the endoplasmic reticulum membranes are coated with ribosomes, the endoplasmic reticulum is said to be rough-surfaced; otherwise it is said to be smooth-surfaced. The Cell: Organelles:
Acyltransferases join free fatty acids Acids Chemical compounds which yield hydrogen ions or protons when dissolved in water, whose hydrogen can be replaced by metals or basic radicals, or which react with bases to form salts and water (neutralization). An extension of the term includes substances dissolved in media other than water. Acid-Base Balance (FFAs) to a glycerol backbone by creating ester bonds to create both TAGs and glycerophospholipids Glycerophospholipids Derivatives of phosphatidic acid in which the hydrophobic regions are composed of two fatty acids and a polar alcohol is joined to the c-3 position of glycerol through a phosphodiester bond. They are named according to their polar head groups, such as phosphatidylcholine and phosphatidylethanolamine. Fatty Acids and Lipids. These reactions result in the loss of an H2O molecule.
Common pathway Common pathway Hemostasis:
To make a TAG:
To make a glycerophospholipid:
Lipolysis Lipolysis The metabolic process of breaking down lipids to release free fatty acids, the major oxidative fuel for the body. Lipolysis may involve dietary lipids in the digestive tract, circulating lipids in the blood, and stored lipids in the adipose tissue or the liver. A number of enzymes are involved in such lipid hydrolysis, such as lipase and lipoprotein lipase from various tissues. Nonalcoholic Fatty Liver Disease is the process of breaking down lipids Lipids Lipids are a diverse group of hydrophobic organic molecules, which include fats, oils, sterols, and waxes. Fatty Acids and Lipids.
There is a different lipase Lipase An enzyme of the hydrolase class that catalyzes the reaction of triacylglycerol and water to yield diacylglycerol and a fatty acid anion. It is produced by glands on the tongue and by the pancreas and initiates the digestion of dietary fats. Malabsorption and Maldigestion for each of the three ester bonds in a TAG. The lipases cleave off fatty acids Acids Chemical compounds which yield hydrogen ions or protons when dissolved in water, whose hydrogen can be replaced by metals or basic radicals, or which react with bases to form salts and water (neutralization). An extension of the term includes substances dissolved in media other than water. Acid-Base Balance by adding an H2O molecule to the ester bond (a hydrolysis Hydrolysis The process of cleaving a chemical compound by the addition of a molecule of water. Proteins and Peptides reaction).
These lipases are found in adipocytes Adipocytes Cells in the body that store fats, usually in the form of triglycerides. White adipocytes are the predominant type and found mostly in the abdominal cavity and subcutaneous tissue. Brown adipocytes are thermogenic cells that can be found in newborns of some species and hibernating mammals. Adipose Tissue: Histology and lysosomes Lysosomes A class of morphologically heterogeneous cytoplasmic particles in animal and plant tissues characterized by their content of hydrolytic enzymes and the structure-linked latency of these enzymes. The intracellular functions of lysosomes depend on their lytic potential. The single unit membrane of the lysosome acts as a barrier between the enzymes enclosed in the lysosome and the external substrate. The activity of the enzymes contained in lysosomes is limited or nil unless the vesicle in which they are enclosed is ruptured or undergoes membrane fusion. The Cell: Organelles.